Lesson No. 22

Interrupts introduce temporary breakage in the program flow, sometimes programmed (software interrupts) and unprogrammed at other times (hardware interrupts). By hooking interrupts various system functionalities can be controlled. The interrupts reserved by the processor and having special functions in 8088 are listed below:

· INT 0, Division by zero
Menaing the quotient did not fit in the destination register. This is a bit different as this interrupt does not return to the next instruction, rather it returns to the same instruction that generated it, a DIV instruction ofcourse. Here INT 0 is automatically generated by a DIV when a specific situation arises, there is no INT 0 instruction.
· INT 1, Trap, Single step Interrupt

This interrupt is used in debugging with the trap flag. If the trap flag is set the Single Step Interrupt is generated after every instruction. By hooking this interrupt a debugger can get control after every instruction and display the registers etc. 8088 was the first processor that has this ability to support debugging.
· INT 2, NMI-Non Maskable Interrupt
Real interrupts come from outside the processor. INT 0 is not real as it is generated from inside. For real interrupts there are two pins in the processor, the INT pin and the NMI pin. The processor can be directed to listen or not to listen to the INT pin. Consider a recording studio, when the recording is going on, doors are closed so that no interruption occurs, and when there is a break, the doors are opened so that if someone is waiting outside can come it. However if there is an urgency like fire outside then the door must be broken and the recording must not be catered for. For such situations is the NMI pin which informs about fatal hardware failures in the system and is tied to interrupt 2. INT pin can be masked but NMI cannot be masked.
· INT 3, Debug Interrupt
The only special thing about this interrupt is that it has a single byte opcode and not a two byte combination where the second byte tells the interrupt number. This allows it to replace any instruction whatsoever. It is also used by the debugger and will be discussed in detail with the debugger working.
· INT 4, Arithmetic Overflow, change of sign bit
The overflow flag is set if the sign bit unexpectedly changes as a result of a mathemcial or logical instruction. However the overflow flag signals a real overflow only if the numbers in question are treated as signed numbers. So this interrupt is not automatically generated but as a result of a special instruction INTO (interrupt on overflow) if the overflow flag is set. Otherwise the INTO instruction behaves like a NOP (no operation).

These are the five interrupts reserved by Intel and are generally not used in our operations.

1.1. Hooking an Interrupt

To hook an interrupt we change the vector corresponding to that interrupt. As soon as the interrupt vector changes, that interrupt will be routed to the new handler. Our first example is with the divide by zero interrupt. The normal system defined behavior in response to divide by zero is to display an error message and terminate the program. We will change it to display our own message.

	
	Example 8.1

	001

002

003

004

005

006

007-029

030-049

050-090
091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142
	; hooking divide by zero interrupt
[org 0x0100]

 jmp start

message: db 'You divided something by zero.', 0
;;;;; COPY LINES 028-050 FROM EXAMPLE 7.4 (strlen) ;;;;;

;;;;; COPY LINES 005-024 FROM EXAMPLE 7.1 (clrscr) ;;;;;

;;;;; COPY LINES 050-090 FROM EXAMPLE 7.4 (printstr) ;;;;;

; divide by zero interrupt handler

myisrfor0: push ax ; push all regs
 push bx

 push cx

 push dx

 push si

 push di

 push bp

 push ds

 push es
 push cs

 pop ds ; point ds to our data segment
 call clrscr ; clear the screen
 mov ax, 30

 push ax ; push x position
 mov ax, 20

 push ax ; push y position
 mov ax, 0x71 ; white on blue attribute
 push ax ; push attribute
 mov ax, message

 push ax ; push offset of message
 call printstr ; print message

 pop es

 pop ds

 pop bp

 pop di

 pop si

 pop dx

 pop cx

 pop bx

 pop ax

 iret ; return from interrupt
; subroutine to generate a divide by zero interrupt
genint0: mov ax, 0x8432 ; load a big number in ax
 mov bl, 2 ; use a very small divisor
 div bl ; interrupt 0 will be generated

 ret

start: xor ax, ax
 mov es, ax ; load zero in es

 mov word [es:0*4], myisrfor0 ; store offset at n*4

 mov [es:0*4+2], cs ; store segment at n*4+2

 call genint0 ; generate interrupt 0
 mov ax, 0x4c00 ; terminate program

 int 0x21

	93-101
	We often push all registers in an interrupt service routine just to be sure that no unintentional modification to any register is made. Since any code may be interrupted an unintentional modification will be hard to debug

	103-104
	Since interrupt can be called from anywhere we are not sure about the value in DS so we reset it to our code segment.

When this program is executed our desired message will be shown instead of the default message and the computer will hang thereafter. The first thing to observe is that there is no INT 0 call anywhere in the code. INT 0 was invoked automatically by an internal mechanism of the processor as a result of the DIV instruction producing a result that cannot fit in the destination register. Just by changing the vector we have changed the response of the system to divide overflow situations.

However the system stuck instead of returning to the next instruction. This is because divide overflow is a special type of interrupt that returns to the same instruction instead of the next instruction. This is why the defaut handler forcefully terminates the program instead of returning. Now the IRET will take control back to the DIV instruction which will again generate the same interrupt. So the computer is stuck in an infinite loop.
